&‘“Andraka Consulting Group

16 Arcadia Drive North Kingstown, Rl 02852-1666 USA

Building a High
Performance Bit Serial
Processor in an FPGA

Raymond J. Andraka

Andraka Consulting Group
16 Arcadia Drive
North Kingstown, Rl 02852-1666 USA

1996
On-Chip System
Design Conference

OJAndraka Consulting Group 1995

AN

S

€Dy &

[%@L

&‘“Andraka Consulting Group

16 Arcadia Drive North Kingstown, Rl 02852-1666 USA

=
B
B S

Abstract

This paper describes the
advantages and pitfalls of a bit
serial architecture by studying
the design of a vector
magnitude processor inside a
radar signal processor. The
design combines bit serial
arithmetic with a CORDIC
algorithm to process 8 million
12 bit vectors per second
inside a single FPGA. The bit
serial architecture has the
advantage of a very compact
design solution that avoids
many of the place and route
problems commonly associated
with FPGAs. The bit clock
required to obtain the
required data rate pushes the
upper limits of today’s FPGAs.
Therefore, this paper also
showcases the high
performance FPGA design
techniques needed to make a
bit serial design more
attractive. Finally, the paper
discusses how to extend the
techniques to develop any bit
serial processor.

(96

Authors/Speakers
Raymond J. Andraka
Current Activities

Ray Andraka is the chairman
of the Andraka Consulting
Group, a digital hardware
design firm specializing in
high performance FPGA
designs. His current
consulting activities include
supporting reconfigurable
computer research, applying
FPGAs to next generation
general aviation avionics, and
developing the electronics
package for a new medical
device. Ray is also writing
application notes describing
design techniques for FPGAs.

OJAndraka Consulting Group 1995

Author Background

Ray Andraka has an MSEE
from University of
Massachusetts at Lowell and a
BSEE from Lehigh University.
He has originated and
improved dozens of designs in
Xilinx, AMD, Altera, Actel,
Atmel, QuickLogic, and NSC
FPGAs over the past 8 years.
Many of these designs were
for high performance signal
processing applications. His
signal processing experience
includes over 5 years
designing pipelined radar
signal processors for Raytheon
and 3 years of signal detection
and reconstruction algorithm
development for the US Air
Force. He also spent 2 years
developing image readers and
processors for G-Tech. He
presented a paper at the 1993
EE-Times PLD Conference
describing his design of a 27
tap 12 bit FIR filter in an
FPGA. That paper is the basis
for designs in at least two
FPGA vendor’s macro libraries

Building a High Performance
Bit Serial Processor in an FPGA

SAdtrTs

Building a High Performance Bit Serial
Processor in an FPGA

the Andraka Consulting Group

"Andraka Consulting Group HEWLETT
"Specialss at Maximizing FPGA perlormanice PACKARD

Raymond J. Andraka

the Andraka Consulting Group
16 Arcadia Drive
North Kingstown, Rl 02852-1666
401/884-7930 Fax 401/884-7950 Email randraka@ids.net

Current Activities
Chairman, the A ndraka Consulting Group. ACG is a hardware design firm
specializing in high performance FPGA designs. Services include new
designs as well evaluation and improvement of existing designs.
Current work includes reconf igurable logic computers in DSP applications,
medical electronics, and digital avionics. | am also writing application notes
for FPGA vendors.

Author Backgr ound
MSEE, University of Mass., June 1992; BSEE, Lehigh University, Jan 1984
High performance FPGA designs, Andraka Consult ing Group, 1994-present
Image readers, point of sales terminals and network equipment,
smart card readers and display controllers in FPGAs, G -Tech 1993-1995
Radar signal processor design and development, Raytheon 1988-1993

Data interception and reconstr uction algorithm devel opment, US Air Force 1984-1988

Overview

* Problem Statement
* Solution
¢ Analysis

e Summary

In years gone by, hardware was expensive. A
common design technique to reduce the costly
hardware was to process data one bit at a time,
reusing the same hardware for each bit. Today the
cost per gate is a fraction of a percent of what it was
then. With cheap hardware, the parallel designs
have become so commonplace that bit serial solutions
are often overlooked for applications where they may
be the best choice. This is especially true when using
an FPGA in signal processing applications. In those
cases the limited size and routing capacity of the
devices is pushed to its limit, often yielding
unsatisfactory results.

A bit serial approach to the design of these processors
can alleviate many of the problems associated with
FPGAs, including the headaches caused by the slow
and limited routing resources. This paper presents
the design tips and techniques to successfully build a
high performance bit serial processor in an FPGA,
beginning with the logic behind choosing a bit serial
approach. In order to highlight the possibilities, the
real world design of a radar vector magnitude
processor is used to provide examples of the
techniques discussed.

To better understand the problem, it is necessary to
first review the function of the vector magnitude
processor and the constraints on the design. In doing
that, we will select and develop the most suitable
algorithm. Once the algorithm has been defined, we
will discuss how to efficiently implement it in
hardware.

Building a High Performance
Bit Serial Processor in an FPGA

SE@L

CW Radar Needs Vector
Magnitude

« 12 Bit complex input
« 12 Bit accuracy Range correlator

¢ 8 Mhz data

e 95% Fault detection
Magnitude

Threshold
Target computer

Most of the processing in the radar signal processor is
performed on complex data in cartesian form. The
target computer at the end of the process requires the
data in polar form. A vector magnitude processor is
used to convert from cartesian space to polar form.
The FFT simultaneously outputs two 12 bit words
representing the in-phase (1) and quadrature (Q) data
every 125 nS. The target computer uses the vector
magnitude and the range-doppler position of each
point in the FFT output to determine presence, size,
distance, direction and speed of the target. To
minimize process noise, the vector magnitude has to
be accurate to 12 bits. A hardware threshold function
is added between the magnitude and the target
computer to discard data with magnitudes below a
programmable floor. This significantly lightens the
process load of the target computer.

The Problem

« Tight board space - single chip
¢ Low volume - no ASIC
« DSP microprocessor not adequate

« Parallel solutions won't fit FPGA

The radar processor needs to fit in a fairly tight
space, and the power budget is small. For these
reasons, the vector magnitude processor, which is
only a small part of the overall process, needs to be as
small as practical. The board space allocated to the
processor is roughly 6 square inches. This mandates
a compact solution, and a single chip solution is
preferred.

The total production run is only around 120 units
including spares. A solution using an ASIC is
therefore only acceptable as a last resort, as the non-
recurring engineering costs do not get spread out
over enough units to bring the cost down to a
reasonable level.

The performance of general purpose DSP
microprocessors is not adequate in this application.
Even with advances in DSP processor design such as
on chip cache, RISC code, out of order execution, and
branch prediction, these processors still suffer from
the inherent serial nature of their instruction
streams. Computationally intense algorithms like the
vector magnitude require many instructions per data
point because there is no dedicated hardware to
perform the function. Vector magitude requires at
least 20 instructions per point to compute. Keeping
up with the 8 MHz data stream would require a 6 ns
instruction cycle.

The logic for a conventional parallel solution to the
vector magnitude problem only fits in the largest
FPGAs. The routing complexity for such a design
exceeds the capability of most of those parts.

Building a High Performance
Bit Serial Processor in an FPGA

SE@L

Solution Process

» Define, test & decompose algorithm
« Hardware implementation

— Bit serial appropriate?

— design & optimize data path

— design control path

¢ Evaluate design

As with any problem, finding a solution begins with
understanding the problem. We are already aware of
the performance and size constraints. In order to
evaluate the options we also need to know what the
processor has to do. We will first evaluate various
methods of computing the magnitude, then select the
algorithm best suited to a hardware implementation.
The evaluation includes modeling the favored
algorithm to verify suitability and to obtain test
vectors for the hardware. Once the algorithm is
selected, it is decomposed to provide insight into how
best to implement it in hardware. After ascertaining
that a bit serial approach is reasonable, the hardware
detail design is done beginning with the data path.
Finally, the completed design is evaluated for
function and timing.

Alternative Algorithms

e SQRT(X?+Y?)

e Larger + 1/2 smaller
¢ Look-up table

¢ Specialty chips

« CORDIC

The most obvious method of computing a vector
magnitude is by using the familiar Pythagoras
algorithm: r=Sqrt(x2 + y2). The square root function
is very difficult to implement in hardware, and the
two squares each require complexity approaching
that of a multiplier. The Pythagoras approach is not
very promising for a compact hardware solution.

A well known approximation of vector magnitude is
the sum of the larger vector component and half of
the smaller component. Later on, you may recognize
that this is essentially the same as doing the first
two iterations of the CORDIC algorithm. From an
error analysis performed on the CORDIC algortihm,
this only yields 3 bits of accuracy in the result. Our
application requires a full 12 bits of accuracy. This
approach is clearly not adequate.

For smaller data widths, a lookup table can be used to
convert the input data to a magnitude. In this case,
the input is 24 bits wide (2 12 bit signed components)
and the output needs to have 12 bits. Using an input
sign reduction, the input can be easily reduced to 22

bits. The look up ROM needs to be 222 (4M) words
deep by 12 bits wide. Even with input sign reduction,
this is a very large lookup table, and would require a
board full of ROMs to implement.

There are a few specialty chips such as the TRW
TMC2330 and the GEC Plessey PDSP16330 designed
specifically for polar conversions. While these chips
are available, they are typically very expensive. All
of these parts are low volume products with single
sources of supply. In the final analysis, the selected
solution provides more function (the threshold
function and much of the entire processor’s timing
logic was pulled into the magnitude processor design)
at a substantially lower cost.

Building a High Performance
Bit Serial Processor in an FPGA

SE@L

What is CORDIC Magnitude?

* Rotate vector to axis

« Series of decreasing
fixed angles

* Number of iterations
determines accuracy

* Angles chosen for
simple hardware X=r cos(a)

CORDIC (COordinate Rotation DIgital Computer)
algorithms are a class of iterative algorithms using
only shifts and adds to realize the result. The specific
algorithm for computing vector magnitude was the
first CORDIC algorithm, and was the result of work
in the late 1950’s by Jack Volder[1]. Later work
extended the CORDIC class to cover computation of
many of the transcendental functions including all of
the trignometric functions, the hyperbolic
trignometric functions, exponentials and the inverses
of all of these. The same architecture can also be
used, although somewhat inefficiently, to perform
multiplication and division. | also demonstrated a
square root CORDIC algorithm in 1991 as part of my
graduate work. The chief advantage of the CORDIC
algorithm is that the hardware is relatively simple:
Vector magnitude hardware is about the same
complexity as an array multiplier!

The trignometric CORDIC functions all work by
rotating a vector through an angle. For magnitude,
the vector is rotated to the x axis, and the resulting x
component is interpreted as the magnitude. Each
iteration of the algorithm uses a successively smaller
angle. The higher the number of iterations, the
closer the rotated vector gets to the target angle, and
therefore the closer the result is to the true
magnitude.

The key to the CORDIC algorithm is that the discrete
rotation angles are carefully selected to allow
implementation using only shifts an adds.

CORDIC Algorithm Explained

« Coordinate rotation in a plane:
— X = xcos(d) - ysin(d)
—y' =ycos(d) + xsin(d)

* Rearranges to:
— X =cos(9) [x- ytan(8)]
—y' =cos(d) [y + xtan(8)]

The rotation of a vector in a plane through an
arbitrary angle, 9, is mathematically described by:

X' = x cos(d) - y sin(d)
and y =y cos(d) + x sin(d).
Rearranging these yields:
X' = cos(d) [x - y tan(d)]
and y' =cos(d) [y - x tan(d)].

If we always rotate the vector by an angle of + 6, the
cos(d) term becomes a constant regardless of the
rotation decision. That constant can be treated as a
scaling constant at the end of the computation. If the
rotation angle is further restricted so that

tan(d) = +2-1 , then the rotation can be implemented
using only a shift and an add (or subtract). By
executing a series of successively smaller rotations,
any arbitrary rotation angle can be achieved. The
cosine terms of the successive rotations accummulate
as a constant that is dependent only upon the number
of iterations performed. The constant at each

iteration is cos(atan(2-1)), which reduces to 1/sqrt(1+

2-21). The aggregate constant is the product of the
constants from each iteration, which approaches
0.607253 as the number of iterations goes to infinity.
In the case of the radar, the constant is simply
factored into an aggregate processing gain attributed
to the entire signal processor.

Building a High Performance
Bit Serial Processor in an FPGA

@E@L

CORDIC Equations

« If 3is chosen so tan(&) =+ 27 then:
- X = ki (x;-diy; 29)
= Yir = ki (yi +di x; 29)

¢ Where:
— d;=-1ify,>0, +1 otherwise

— k; = UUsqrt(1+ 2 %)

The decision function, di, is used to make the vector
converge on the x axis. If the angle before rotation is
positive (y is positive), a clockwise rotation is made,
otherwise the rotation is counterclockwise. The sign
of y before each iteration is easy to obtain, and works
well to control the progress of the process.

CORDIC Notes

e Works for - W2 <6< w2
— x<0 requires angular reduction
* Output scaled by product of k |'s

« Decisions describe rotation

The CORDIC magnitude algorithm will work for any
angle with a magnitude less than the sum of the
angles subtended at each iteration. That sum is
approximately 100 degrees for 3 or more iterations.
For convenience, we limit the input to the CORDIC
processor to +90 degrees. Vectors in the Left half
plane (negative x) are easily accommodated by a
simple angular reduction: negate the x and y
components if the x input is negative, effectively
doing a 180 degree rotation.. This reduction is
included in my hardware.

The CORDIC processor has a constant processing
gain attributed to the constant cosine terms. This
results in the output being scaled by approximately
1.647. In the case of the radar, this is lumped with
several other fixed gains in the signal processor and
dealt with in the post processor. Most applications
can treat the gain in the same manner. In
applications where the unscaled magnitude is needed,
a multiplier is required to correct the scale.

The direction of each partial rotation is determined
by a binary decision function, and the angle of
rotation is fixed for a given iteration. It is therefore
possible to determine the total angular displacement
solely from the sequence of decisions made in
computing the magnitude. A small ROM can be used
to convert the decision vector to an angular
displacement in any angular measurement system.
Of course the components of the decision vector need
to be aligned in time using appropriate delays to
create the ROM address. Alternatively, an additional
adder/subtractor can be added to the processor which
either adds or subtracts the appropriate fixed angle
at each iteration to accumulate the total angle in
whatever units are convenient. The decision vector
itself comprises an angular unit system referred to as
a Binary Angular Measures or BAMs.

The fact that the decision vector describes the angle
of rotation hints that a vector could be rotated
through an arbitrary angle by controlling the rotation
with the desired angle instead of the decision variable
used for magnitude. Obviously, that angle has to be
expressed in BAMs. This can be accomplished by
either using a small ROM or by using an additional
adder/subtractor as discussed above. In addition to
general vector rotation, such a processor could be
used to compute the sine and cosine of an angle (a
unit vector placed on the x axis rotated through the
desired angle will yield the sine and cosine). The
processor gain can even be compensated for by
scaling the initial unit vector by the reciprocal of the
processor gain! Similar strategies can be used to
arrive at the other trignometric functions and their
inverses. This is exactly the mechanism used by
early ‘scientific’ calculators to compute the
trignometric functions.

Building a High Performance
Bit Serial Processor in an FPGA

SAdtrTs

Angular Error Analysis

* Maxerr(a) = g,

e Err(r) = r(1-cos(€))

¢ Accuracy improves by
2 bits/iteration

« 7 iterations needed <

The output from the magnitude processor is the projection of
the rotated vector onto the x axis. When the rotated vector
lies exactly on the x axis, there is no error due to the angle.
For most angles, however, the rotated vector angle will not be
exactly zero. In that case, the computed output is reduced by
the cosine of the angular error. The worst case angular error
occurs when the next to last iteration produces a vector with a
zero angle. The last iteration then moves the vector away
from the axis by the angle of the last rotation. The magnitude
result is bounded by the true magnitude and the cosine of the
last rotation angle times the true magnitude. Note the error is
biased; it always reduces the result. The desired accuracy
determines the number of iterations required. The tabular
analysis of the angular error shows a 2 bit per interation
improvement in the accuracy of the result.

Truncation Error Analysis

» Limited precision causes error
¢ Right-shifted data truncated
* 3extra LSBs needed

¢ Round final result to drop LSBs

The result of the angular error analysis assumes infinite
precision in the arithmetic. Further errors are caused by the
truncation of the LSBs in the right shifted terms at each
iteration. An approximation of the maximum error to be
expected due to truncation can be found by summing the
errors at each iteration when all the truncated bits are ‘1's.
The tabulated results below, show that for 7 iterations, the
error can be as large as 3 least significant bits. To reclaim
the accuracy, the processor needs to carry three additional bits
of precision. The input data should be padded on the right
with three zero digits to keep from losing the Isb

contributions. The output can be taken from bit 3 and up to
maintain the 12 bit path outside of the processor. To retain
1/2 Isb accuracy, a number equal to the bit 2 weight should be
added to the result to round the result rather before truncating

maximum errors It.

2/\(-i) rot angle % mag phase err mag error mag |[scale _ _ _ _
atan(2”-i) 1-cos(a) (deg) % * full scale|bits |factor [21-i) trugfr?)[rlon trsﬁ‘é;&waéer?m bits

0| 1.000]| 0.785398 29.2893 45| 1199.691| 11| 0.707107 0 | 1.000 0.000 0.000 0
1] 0.500| 0.463648 10.5573| 26.56505| 432.4262 9| 0.632456 11 0500 0.500 0.500 1
2| 0.250] 0.244979 2.9857| 14.03624| 122.2963 710.613572 2 | 0.250 0.750 1.250 1
3| 0.125|0.124355| 0.7722| 7.125016| 31.62982| 5| 0.608834 31 0125 | 0875 5125 >
4| 0.063| 0.062419| 0.1947| 3.576334| 7.976639| 3| 0.607648 210063 | 0938 3.063 2
5| 0.031| 0.03124| 0.0488| 1.789911| 1.998536| 1| 0.607352 510031 | 0969 2.031 3
6| 0.016] 0.015624]| 0.0122| 0.895174] 0.499908| -1[0.607278 6 1 0016 | 0982 5016 3
7| 0.008| 0.007812 0.0031| 0.447614| 0.124994| -3| 0.607259 7 1 0.008 | 0.992 6.008 3
8| 0.004| 0.003906 0.0008| 0.223811| 0.03125 -5/ 0.607254 8 | 0.004 0.996 7.004 3
9| 0.002] 0.001953 0.0002| 0.111906| 0.007812 -710.607253 9 [0.002 0.998 8.002 4
10| 0.001| 0.000977 0.0000| 0.055953| 0.001953 -9] 0.607253 10| 0.001 0.999 9.001 4
11| 0.000| 0.000488 0.0000| 0.027976| 0.000488| -11| 0.607253 11] 0.000 1.000 10.000 4

Building a High Performance
Bit Serial Processor in an FPGA

@E@L

Overflow Error Analysis

« Avoid internal overflows
¢ Extra MSBs allow growth
* Need one extra MSB

e Drop MSB in result

The processor described in this paper is a fixed
precision integer arithmetic processor. As such, it is
subject to overflows. While the effects of an overflow
are predictable, the output can be very confusing and
can be devastating to downstream processing.
Overflows can be treated by using saturating
arithmetic to minimize the ill effects. Overflows can
be avoided entirely by adding sufficient ‘guard’ bits
above the most significant bit to allow enough
headroom to accommodate the maximum possible
growth. The result can be truncated (or rounded) to
retain the desired word width. Saturating arithmetic
requires a considerable amount of hardware to realize
and is not a perfect solution. In parallel systems,
additional precision often requires more hardware
than saturating arithmetic, so that approach becomes
attractive. In contrast, the precision in bit serial
systems can extended simply by increasing the length
of the input word (may require extra delay registers).
The only real penalty is the increased number of
clocks required to process each word.

If both vector component inputs are allowed to go to
full scale simultaneously, the magnitude of the
resultant vector is 1.414 times full scale. The
CORDIC process has a gain of approximately 1.6,
which when combined with the maximum vector
magnitude yields a maximum output of 2.33 times
the full scale input. The data grows in the CORDIC
process monotonically, so the maximum level is at the
output. Without further knowledge of the input, the
processor would require 2 ‘guard’ bits to accommodate
the maximum growth without overflowing. In our
system, the combined effect of the limiting in the
range correlator and the scaling performed in the
FFT and correlator limit the magnitude of the input
vector sufficiently to require only one guard bit.

The processor works on two’s complement data, but
by definition, the output is always positive. The
guard bit in the output is the sign of the output, and
is therefore always zero. Provided the target
computer is expecting unsigned data, the extra bit
carried through the process can be dropped at the
output with no consequence.

Analysis of the algortihm shows that the X data path
is always positive after the input angle reduction, so
it could use unsigned arithmetic as long as a zero
sign bit is provided to the Y path elements. The Y
component needs to retain sign, but does reduce in
magnitude as the algorithm progresses, so the
number of bits in Y could be reduced after the initial
rotation. In a parallel system these nuances can save
a significant amount of hardware. A serial system,
however, is much easier to deal with and uses less
hardware if it has a fixed precision throughout.

Analysis Summary

e 7 lterations
« 16 Bit internal precision
— 3 Extra LSBs
— 1 Extra MSB
¢ Round result to eliminate LSBs
« Drop result sign bit

The various error analyses dictate the form of the
CORDIC processor we need. The desired accuracy
requires 7 iterations, which translates into 7 cordic
stages. Errors caused by truncation require 16 bit
precision internally to maintain the accuracy. The
sign bit can be dropped at the output since the output
is always positive, and the three extra LSBs can be
eliminated by rounding to obtain the desired 12 bit
output.

Building a High Performance
Bit Serial Processor in an FPGA

SE@L

Model the Algorithm

* C implementation
* Word size should match hardware
¢ Proof of algorithm and accuracy

* Provides test vectors for hardware

For all but the most simple algorithms, | highly
recommend modeling the algorithm in a high level
language such as C before proceeding with the
hardware design. This is especially true for iterative
algorithms like the CORDIC since a seemingly small
error can lead to drastically different results. The
model should accurately reflect the precision and
process through out the computation. Therefore, in
the case of the CORDIC, it should model each
iteration. The important result from the modelling is
to observe any ill effects from truncation, overflow
and other boundary conditions, as well as to verify
the basic function of the algorithm. This will allow
you to correct algorithmic problems before investing
time in detailed hardware design. A very favorable
benefit of modeling the algorithm, is that it provides a
source of test vectors and intermediate results for
tracing problems while simulating and debugging the
hardware.

CORDIC Process

sign(X) sign(F)

Mapping out the process provides clues as to how to
implement the algorithm in hardware. The iterative
process is drawn as a process flow, which is easily
translated to a straight-through or pipelined design.

For applications where required performance is low,
the algorithm can actually be performed by looping
the data through the same hardware several times.
The early ‘scientific’ calculators implement CORDIC
algorithms using hardware loops and bit serial
techniques to get away with an amazingly small
amount of hardware. In our application, the desired
throughput demands a pipelined design.

The pipelined 7 iteration design requires 17 adder-
subtractors with pipeline registers inserted at
convenient points. Most of the adder subtractors
need to process 16 bit data (the first in each path
could be reduced to 12 bits, and each after that needs
to increase precision by one bit to a maximum of 16
bits). Total pipeline latencies up to several
milliseconds are acceptable, as delays on this order do
not affect the operation of the radar.

The logic for a parallel design will fit in some of the
larger FPGASs such as the larger Xilinx 4K series
parts. Unfortunately, the design cannot be routed in
most of those parts, as they do not have sufficient
routing resources to provide both the straight and
crossed interconnect between the CORDIC stages.
The parallel design should route in a Xilinx XC4025
FPGA as long as the design is properly floorplanned
and no other logic is included in the device (this
results in less than 20% logic utilization). The
maximum performance of the parallel design
implemented in the Xilinx XC4025 is less than four
times the performance of the basic bit serial design
presented in this paper!

Building a High Performance
Bit Serial Processor in an FPGA

SE@L

Bit Serial Approach
A Quick Primer

* Process data one bit at a time
¢ Large hardware savings
¢ Clock per bit instead of per word

¢ Time-hardware product improved

Today, most computing is done on a word at a time
basis. These bit-parallel designs operate on the
entire width of a data word simultaneously. A bit-
serial design operates on the data one bit at a time,
reusing the same hardware for each bit. While this is
inefficient timewise, the hardware savings can be
enormous.

The majority of the processes we do on a data stream
involve passing intermediate results across the width
of the data word (carries for example). The
propagation delays associated with this perpendicular
flow can be significant, and directly influence the
overall performance of a word wide system. In serial
systems, the intermediate result can generally be
held in a register until the bit that needs it arrives.
The clock to clock propagation delays in a serial
system are usually a small fraction of the delays in an
equivalent parallel system. This means the time-
hardware product of the serial system will be
significantly higher than a parallel system (less than
n serial processors are required to match the
performance of an n bit parallel processor). The
signal routing in a serial design also tends to very
localized. In technologies like FPGAs where the
routing resources are limited, this provides a
substantial advantage. The local routing also helps
to diminish the delay associated with the
interconnect in FPGAs.

Is Bit Serial Appropriate?

« Algorithm adaptable to bit serial?
¢ Data rate achievable?

¢ Bit clock available?

« Pipeline latency acceptable?

A few questions need to be addressed when
considering a bit serial solution. First, the algorithm
needs to be able to be expressed as a serial procedure.
Most algorithms can be serialized, although some are
considerably more difficult than others to realize.
Decomposition of the algorithm and transitive
analysis on the subfunctions can be helpful in
mapping out a serial strategy.

A second consideration when contemplating a serial
solution is whether the data rate is achievable in the
target technology. Modern FPGAs can realistically
achieve register to register times as low as 8 ns in
useful serial designs. The bit rate is therefore limited
to around 125 MHz.. The overall data rate is the bit
rate divided by the number of bits in the stream,
including any overhead bits used for control. Expect
to add one bit interval for resetting serial elements
before each word. If the resulting rate is too low and
enough unused logic exists it may be possible to use
two or more processors in a parallel interleave
arrangement to boost the data rate.

If the device can achieve the required performance, a
bit clock must be available to clock the processor. In
systems where the high bit clock is not available, a
phase lock loop arrangement for synthesizing the
clock can be used. The high frequency bit clock
needed for high performance serial systems demands
careful attention to transmission line effects and
electromagnetic interference.

Finally, the application for the processor must be able
to tolerate any pipeline delay introduced by the serial
processor. The latency in a parallel system is
frequently as high or higher than the equivalent
serial system, so this is rarely a concern.

Building a High Performance
Bit Serial Processor in an FPGA

@E@L

Bit Serial Conversion

« Decompose algorithm
« Use standard serial solutions

¢ Transitive Analysis for unusual
functions

« Relative delays for bit shifting

The conversion of a parallel design to a bit serial
algorithm begins with separating the algorithm into
its component parts. Once that is done, many of the
more common functions can be directly implemented
using readily available serial solutions. Solutions to
the more unusual functions can be identified using
transitive analysis.

Transitive analysis can be very valuable for
understanding the vagaries of implementing unusual
functions in serial logic. Transitive analysis is simply
the practice of determining which output bits are
affected by the values of each input bit. This not only
indicates the preferred shift direction, but also
indicates which bits need to be held for future
computations and hints of the complexity of the
function.

Since the data is presented a bit at a time, bit shifting
is accomplished by delaying one bitstream relative to
another. Most of the time, this will require some
special treatment to handle the misaligned word
boundaries. An example of the shifting is found in
the magnitude processor presented in this paper.

Transitive Analysis

« Left transitive functions - Isb first

* Right transitive functions - msb first
« Intransitive functions - trivial

« Full transitive functions - difficult

* Ripple transitive - preferred form

The majority of arithmetic functions are left
transitive, meaning only outputs of equal or higher
order than (to the left of) the input bit are influenced
by the value of the input. Left transitive functions
therefore favor right shifting so that the LSBs are
presented first. These functions include all of the
unadic arithmetic operators, addition, subtraction,
gray code and bcd conversions.

Right transitive functions have outputs that are
affected only by the inputs of higher order than the
output. The most notable example of a right
transitive function is the compare. If your processor
is primarily performing sorting or other compare
intensive operations, MSB first may be the preferred
shift direction. It is worth noting that compares can
be done in a predominantly left transitive system
using subtraction and detecting sign and overflow in
the result. This requires more complexity than the
msb first logic, but is easier than switching shift
direction in the middle of a process.

Intransitive functions are those where the output is
only influenced by the inputs of the same order. The
bitwise logical operators all fall in this class. These
functions are trivial to implement in serial systems.

Functions that sample several or all of the input bits
to produce an output not dependent on the input bit
positions can be treated as either left or right
transitive. Examples of these are tally adders, parity
trees, and zero detection circuits.

Fully transitive functions are those which every
input affects every output. I include partially
transitive functions that cannot be classified as either
right or left transitive in this class, since these get
treated the same way. Functions in this class include
bit rotations, bit field operations, and arbitrary
encode/decode functions. These functions can be

Building a High Performance
Bit Serial Processor in an FPGA

SE@L

difficult to translate to bit serial mechanisms.
Sometimes they are best handled in the parallel
realm. Fortunately, most of the functions you will be
dealing with can be classified as left or right
transitive. A little ingenuity often helps find
alternative solutions for those functions that are not.
Translation of this difficult class is beyond the scope
of this paper.

Ripple transitive functions with a distance of n are
those whose output can be formed the from the
current input and the n previous inputs and outputs.
Previous in this case refers to either the next higher
or next lower bit depending on the direction of the
ripple transitivity. This class of functions is
interesting because many of the left or right
transitive functions can be expressed more compactly
in a ripple transitive form. The unadic artihmetic
operations, add and subtract, for instance, can all be
expressed as left ripple transitive functions with a
distance of 1. This means that each output can be
expressed as a function of an output from the
previous bit and the current input. Multiplication
also can be expressed in a ripple transitive form,
which is the basis of the serial by parallel multiplier.
Since this form has the effect of simplifying the
hardware, it is the preferred form. The ripple
transitive form is often the intuitively obvious form of
the function.

Shift-Add/Subtract Element

I+
<
I
T
I+
9]

N

The development of the shift-add/subtract element
used throughout the CORDIC processor is illustrative
of the conversion process. Notice the carry from the
full adder is registered (effectively a 1 bit shift) and
returned to the carry input of the adder. This is an
implementation of the ripple transitive form of the
adder. It is a stock solution.

The 2-i shift is accomplished using delays to realign
the bits in F relative to the bits in G. The data is
presented LSB first. In order to shift G i bits to the
right, the bits in G must arrive at the processing
element i bit times before the corresponding bit in F.
By inserting the delay on the F path, the F data is
shifted to the left relative to G which is the same as
the G data being shifted to the right relative to F.

There are two problems with the element as shown
here. First, , the carry flip-flops need to be cleared
before each new data word so that the previous
word’s carry out is not added to the current word.
There is a similar clearing concern in the 2's
complement stage. The other problem is that when
intentional bit misalignments are introduced, the
word boundaries also become misaligned. This
causes the dangling Isbs on the next right shifted
word to be processed with the msbs of the other data
stream(s). Extra logic needs to be added to eliminate
the overlap between the words on shifted inputs. In
most cases, the best way to do this is to replace the
dangling Isbs on the right shifted word with either
zeros for unsigned systems or the extended sign of
the previous word for two's complement systems.
Note also, that extra pipeline delays need to be added
to the F path to match any delays in the 2's
Complement stage so that the data retains it's
intended alignment.

Building a High Performance
Bit Serial Processor in an FPGA

SE@L

Improved Shift-Add/Subtract

I+

RN

[e

e @_ﬁ»}}f Ll
SX ;

The function of the two’s complement stage in the
original design can be decomposed and partially
combined with the adder that follows it. Two's
complement is found by inverting the operand and
adding one to the result. Setting the carry bit in the
adder (essentially forcing a carry in) before the the
data arrives causes the the sum to be increased by
one. Therefore, we can invert the input to be
subtracted and set the carry to realize subtraction.
The familiar serial algorithm (pass the data until the
first ‘1’ bit then invert) is in fact just a logic reduction
of a serial adder with one input at zero and the carry
set before the operation begins. To create a selectable
add/subtract, you simply need to control the inversion
on the subtracted input and either set or reset the
carry flip flop as appropriate before the operation
begins. The inversion is easily controlled using an
exclusive OR gate.

Synchronous design is essential to achieving the high
performance required. The flip flop direct sets and
resets are often not recognized as being
asynchronous. These should not be used in the
design (they can be connected as a global reset for
power up initialization-but don’t waste routing
resources connecting them). The word cycle resets
and sets should be done using added logic to realize
synchronous behavior. These controls do not
necessarily need to be introduced right at the
targeted register. In our design, that could cause
unnecessary routing congestion. The effect of a set or
reset can be had by forcing the value of the data
upstream of where the reset is needed. The carry
output of the full adder (this is the register that needs
to be reset) is the majority function of the adder
inputs. Its value can be forced by controlling any two
inputs to the adder. The logic used in this
implementation forces 1's or 0's into the F and G
inputs to set or reset the carry. The injection point

for the reset is convenient to the controlled inversion
as well.

The drawing shows ghosted flip-flops after the reset
and twos complement logic. These registers are not
functionally needed, but in many of the FPGA
technologies they should be inserted to break up the
otherwise long combinatorial delay. Even with parts
that allow enough inputs and logic to implement the
adder and reset logic in one cell, it may be
advantageous for routing reasons to insert the
register to force the use of two cells.

This improved shift-add/subtract element also solves
the misaligned word problem introduced by the shift
of G relative to F. The SX control passes G data
until the sign bit arrives, then holds the value of the
sign for the rest of the word, effectively extending the
sign over the Isbs of the next data point . Sign
extension is considerably more difficult to accomplish
in an msb first system.

The delay queue on the F input still exists, as

represented by the z-i on the F label. | have not
included the registers in this drawing for clarity, and
to aid in the understanding of the control logic
developed next.

Building a High Performance
Bit Serial Processor in an FPGA

SE@L

Processor Controls

« Internal controls

— derived from data path
« External controls

— periodic, independent of data
¢ Hybrid controls

— separate into components

The serial data path normally includes a number of
controls that influence the execution of the function.
I classify these controls as internal and external
controls.

The internal controls are those derived from the
datastream, and are usually dependent on the
intermediate values of the data. These controls are
generated entirely from within the data path
processor. Examples of internal controls are those
derived from the sign of data or from the results of
comparisons. Adding the internal controls often
requires additional logic and pipeline delays to
extract and align the control with the data. These
adjustments to the data path can effect the timing of
the external controls and may add additional external
controls. This is why | treat the internal controls
first.

The external controls are not affected by the values of
the data stream. The external controls are generally
periodic with a period equal to the word rate. These
controls are created external to the data path by some
form of sequencer. This class includes all the timing
controls to the data path such as resets, sign
extension and latch controls. The timing of the
external controls is affected by added pipeline delays,
so their design is best left until after the data path
has been optimized for a particular FPGA.

Occasionally a control is a hybrid of the two classes.
In these cases, it is usually advantageous to keep the
internal and external components of the control
separate until the point where they are used. This
practice sometimes even allows the logic to be
partitioned more efficiently.

Shift-Add/Subract Internal Control

R 0123456789ABCDESR

F
ASCIFFQ[S R
ASFF
sign ex i Q
25

L

ox |o

The only internal control in the shift-add/subtract
element is the add/subtract control. The magnitude
CORDIC algorithm uses the sign of the Y component
from the previous iteration to select add or subtract
(the control is inverted to one path so one adds when
the other subtracts).

The sign bit is the last bit presented since the word is
shifted Isb first. A pipeline delay is required to delay
the data to the next stage until the sign is available.
The length of the delay pipe depends on the word
length and the relative delays between the sign pick-
off and the control application.

The value of the sign affects the process of the entire
data word, so the sign value has to be held. A simple
register and multiplexer arrangement satisfies this,
but requires an additional external control signal.

I have found that a timeline is a useful aid for
ensuring the proper alignment of control and data. It
reveals the delays necessary to keep data and control
aligned, as well as nature of the control signals. | use
a spreadsheet for the timeline, as it allows quick
reproduction of the data stream and easy
modifications

The delay used to shift the G data with respect to the
F data can be absorbed into the delay required to
obtain the sign. The G data is taken off a tap in the
delay pipe an appropriate number of bits ahead of the
F output. The tap is different for each stage in the
pipeline. Pipeline reductions like this are frequently
possible with the proper selection of control pick-offs.
A matching delay is required on the X data path to
keep the X and Y data aligned.

Building a High Performance
Bit Serial Processor in an FPGA

SE@L

Device Selection

* Registers and IO

¢ Speed

¢ Cell architecture - fine grain superior
« Storage technology - RAM

¢ Tools & availability

Any FPGA is suited to bit serial design. The first
consideration is whether there is sufficient logic and
1/0 resources to support the design. The minimum
number of registers needed can be obtained from the
groundwork we've already done. In most cases, the
logic ahead of each flip flop is fairly minimal or can be
broken into a couple of pipeline stages. Most bit
serial designs have a very low routing complexity, so
the routing resources are not an issue.

For high performance bit serial designs, the cell and
routing delays play a very significant role in the
success or failure of a design. Examination of the
timing published for a one bit adder or a similar
macro in a vendor’s library will give a ballpark figure
of the types of speeds you can expect to get from each
device.

Finer grain architectures tend to be superior for bit
serial designs because they offer a higher register to
logic ratio. The serial designs tend to have many
registers with little or no combinatorial logic in front
of them, so much of the logic in coarse grained arrays
goes unused. One caveat to using fine grained
devices is that some seemingly simple logic functions
may require several cells to implement, or may
require some changes in logic to tailor the algorithm
to the logic. Look-up table devices are the easiest to
use, but beware of the register counts and resist the
temptation to use all of the inputs to a cell.

The RAM based FPGAs are a boon to in circuit
testability. The fault isolation requirement for this
processor is easily met by loading a test function into
the FPGA in place of the vector magnitude. The
drawbacks to RAM based parts are that they need to
be loaded from an external device or bus before they
do anything, and that the device programs are not
secure from reverse engineering.

A final consideration in part selection is the price and
availability of the part and the usefulness of the tools.
The price and availability of the parts are superficial
to this paper. For high performance work, the tools
must, at a minimum include relatively painless
floorplanning, an accurate static timing analyzer that
operates on the routed design, and the ability to
inspect and directly manipulate the placement and
routing. A good macro generation facility that allows
hand place and route is also high on the should-have
list.

Based on these considerations, as well as some
external influences we chose the National
Semiconductor CLAy 31™ for the vector magnitude
processor.

National Semiconductor CLAy 31

» 3136 registers

A
. 1081/0 A Dﬁ —I:
L L

e ~2ns/ cell 1
B

The CLAy 31 cell is basically a half adder with a
register on the sum output. It contains a little extra
logic to allow configuration as a 2 input mux and a
few other basic functions. Each cell has 2 direct
connections via the A and B wires to each of the four
nearest neighbors, and connections to horizontal and
vertical local busses (L). This cell architecture is
extremely well suited for bit serial processors.

A basic serial adder can be made using four cells,
although a six cell variant is more routable. The six
cell adder has a worst case clock to clock time of
11.5ns. Pipelining the serial adder reduces the
minimum clock period to 5.8 ns.

One of the strengths of the CLAYy 31 is the sheer
number of registers it contains (3136 cells with a flip-
flop per cell). I've done a 27 tap bit serial correlator
[2] in this part, and it is possible to fit a serial FIR
filter with over 50 taps.

Building a High Performance
Bit Serial Processor in an FPGA

@E@L

High Performance Tune-Up

* Synchronous design

« Use hierarchy

« Alternate logic realizations

« Pipeline to break long delays

« Duplicate logic to reduce fanouts
« Handcraft place & route

The serial architecture derived so far is already well
matched to nearly any FPGA. The biggest headaches
with FPGAs are usually caused by routing complexity
exceeding the ability of the resources. A serial design
has minimal routing by nature. There are still
several things which can be done to tune the design
for better results.

First, as | mentioned earlier, the entire design should
be synchronous, including the sets and resets. If you
have followed my advice so far, this is already taken
care of.

Use hierarchy in the design. This keeps the design
organized, makes it easier to select macro boundaries,
and speeds the design cycle. Some of the automatic
place and route tools also look at the heirarchy for
hints when placing the design.

Some logic may not map efficiently into the cell
architecture in FPGAs that do not use look-up tables.
The National Semiconductor device, for example does
not implement OR gates very well (the OR gate in the
library must connect one input to a local bus). Look
for alternate logic realizations that will fit the
architecture better.

Add pipeline registers to break up long delays.
Sometimes, rearranging the order signals get
combined in combinatorial logic will permit better
partitioning. When adding pipeline delays in a path,
remember to add an equal number in any parallel
paths, including control timing. A frequently missed
source of long delays is in the routing. The clock to
clock timing can often be improved by “pipelining the
wires”. This is usually not obvious from the
schematics.

The serial designs normally do not have very high
fan-outs in the data path. Be aware though, that
even small fan-outs (as low as three) can affect timing

enough to ruin some of the fastest designs. Eliminate
high fan-outs by duplicating the signals at the source
or in a pipelined distribution tree. The external
controls are especially susceptible to high fan out. On
those controls, | prefer to pipeline the control, taking
taps off the pipe at the correct phase closest to the
destination. Doing this will usually reduce the
master timing to a very simple ring counter.

On very high performance designs it is absolutely
critical to understand how the logic fits into the cells
and what interconnect is used. | strongly recommend
careful floorplanning at this stage. A time saving
technique is to design macros for the subfunctions.
Place and route the macros as hard or relationally
placed macros. In the design of such pieces,
awareness of the locations of the 1/O relative the
adjacent functions goes a long way toward a good
design. There are always those who will frown on the
detail at this stage, but the human mind is still the
best place and route tool there is and the layout is the
most critical link to maximum performance.

Serial processors are generally compact enough that
in cases where a single processor does not meet the
required cycle time, additional processors can be used
in a parallel interleave fashion. Those algorithms
that operate on a block of data rather than on
individual data points are generally not well suited
for parallel interleave acceleration.

Building a High Performance
Bit Serial Processor in an FPGA

SE@L

Finished Shift-Add/Subtract

ASNI
RNF

F

] FID

Gel .i c'
SX «| FsE

RS

The finished design of the shift-add/subtract element
incorporates a number of the performance tune ups.
None of these improvements would have been
apparent without floorplaning.

The design shown has the clock and asynchronous
resets omitted for clarity. The asynchronous resets
are only for power-up reset. The processor is
initialized synchronously using the external controls
RNF, RNG (not shown) and RS at each stage.

The traditional OR gate in the carry logic of a full
adder has been replaced with an exclusive-OR (the 1-
1 input condition is impossible in this case) yielding a
much faster and easier to route design. This is a case
where the device architecture influences the design.

The single level design of the full adder required a
minimum clock to clock time of 11.5 ns. Adding a
pipeline register halves the minimum period to 5.8ns.
The full adder inputs had to be swapped around to
avoid putting the pipeline register in the carry
feedback loop (the non-pipelined six cell design adds
the fedback carry at the first half adder).

The inverted add-subtract control was originally
obtained from the AS flip flop through an inverter.
The long route combined with the multiple loads on
the AS signal caused the delay to exceed the target
value of 8ns. Adding registers, essentially pipelining
the wires, brought those delays in line. The delay
gueue was extended to keep the data and control
aligned.

I handcrafted a placed and routed macro containing a
pair of the adder-subtractors and the a/s control.
Each stage of the processor consists of one instance of
this macro, the external control logic (a macro) and 2
delay queues. By doing the majority of the work in
reusable macros, the entire design was completed
inside two weeks.

External Controls

¢ Use a Timeline
« Route controls perpendicular to data
« Keep fanouts low

« Generate control with pipeline

When the data path logic is laid out, run the external
controls on long lines or busses extending
perpendicular to the general data flow. If the desired
control signal connects to more than one column
(assuming the data is flowing across), split it into
separate controls. In cases where the control has
multiple loads in the same column, it may be
worthwhile splitting the load to reduce the delay due
to fanout.

The design of the external control pipeline should
wait until after the data path design has been
completed, including layout. Again, a timeline
showing the data flow through the processor is
invaluable for deriving the controls. The external
controls are periodic, and should be easy to generate.
Use the timeline to find the timing relationships
between every external control signal and the data.
This will provide the phasing information you need to
build the control pipeline.

Higher performance can be obtained from the design
if the control is treated as a pipeline, where a
stimulus is injected into the front and then ripples
down the pipe providing the control as it propagates.
This avoids long routing and allows the control to be
distributed. The stimulus in this scheme can often be
the output from a ring or LFSR counter.

Building a High Performance
Bit Serial Processor in an FPGA

SE@L

External Control Pipe Section

RNG| [RNF [SX RS

RS I RSO
RNO

HHHHH

The external control is provided by a pipeline. The
top pipeline provides the reset signals corresponding
to the reset bit time in the data. This gets phased
properly to match the data everywhere it is needed.
The bottom pipeline generates the sign extension
control, which grows one bit time longer in each
subsequent pipe section. This pipe section is repeated
for each cordic stage. The first stage input is derived
from the parallel to serial shift register load pulse.
The three outputs on the right connect to the
corresponding inputs of the next stage. The layout of
the control pipe is designed to match the 4 cell width
of the shift-add/subtract element and delay queues.

Design Verification

« Functional Simulation - Viewlogic
— No delays
— Check proper Function
 Static timing - FPGA timing tool
— Max register to register delays
— Indicates maximum bit clock

The first step in a design verification is functional
simulation. Use Viewlogic’'s Viewsim or an
equivalent logic simulator. Don’t bother with
modelling the delays, the goal here is to verify the the
proper function. Use the same vectors used with the
C model so that the model outputs can be compared
with the simulation results. The simulation data set
should minimumally cover all of the boundary

conditions and all possible combinations of the signs
of input vectors. In the case of the CORDIC
processor, a minimal set would include vectors from
all four quadrants with all combinations of maximum
and zero magnitudes.

After the function is verified, the timing should be
checked to make sure the specification is met. If
you've done your homework in the design phase, you
will already have a good feel for where the timing
lies. Nevertheless, a thorough static analysis should
be done to verify the system will run under all
conditions. Most of the FPGA tools now include
timing analyzers that provide worst case delays
between various elements of the design. Be cautious
of the timing reports on some of the tools; the tool set
up can be complicated and it is easy to miss some
paths. Also, make sure the tool is set up for worst
case timing, not typical or best. A hierarchical design
using prerouted macros saves a lot of effort in the
timing analysis.

The Atmel tools indicate entire CORDIC processor
has a worst case register to register delay of 8 ns in
the -2 part. For the 17 bit data word (16 data bits
plus the reset bit), this means a 136 ns word cycle
time. A single processor does not meet the
requirement. A CORDIC pipeline processor only
occupies about 25 percent of the FPGA, including the
1/0 shift registers. In order to boost the apparent
performance, | used two instances of the processor,
interleaving the data so that the apparent minimum
cycle is reduced to 68ns. While there are enough
unused logic cells to allow up to 4 pipelines. The
shape of the completed processor is such that only 2
parallel processors will fit. The design could probably
be laid out differently so that at least 3 and maybe
four pipes would fit with similar performance. This
design was purposely done with tall narrow cells to
leave space for post processing. If symetric sampling
at the input and/or output is required for all phases,
the precision of the processor can be increased to
make the cycle time evenly divisable.

I am not a fan of timing simulation for synchronous
designs. There are almost always timing situations
which are either not set up properly and not detected
or which are not recognized and therefore not
simulated. A thorough static analysis will uncover all
the potential timing problems.

Building a High Performance
Bit Serial Processor in an FPGA

SE@L

Design Assessment

* 30 x 22 cells per processor pipe
e 7.35 MHz data (14.7 MHz w/ 2 pipes)
* 80% of FPGA left usable

The CORDIC processor studied in this paper occupies
a rectangular area 22 cells high and 30 cells wide, not
including the output rounding and the 1/O shift
registers. Nearly 80% of the device is open for the 1/O
and other uses. The design uses a remarkably high
67% of the cells it covers for logic. Less than 2% of
that logic is unregistered. The majority of the
remaining cells under the macro are used for wiring.

A single instance of the pipeline can handle word
data rates up to 7.35 MHz under worst case
conditions. Adding a second pipeline in a parallel
interleave arrangement doubles the maximum data
rate to 14.7 Mhz, and uses a little over 42% of the
device.

The pipeline latency of the CORDIC processor is 148
bit clock cycles. That translates to a latency of less
than 9 word times. The equivalent parallel processor
would need more than 9 pipeline delays to achieve
performance any better than the serial processor.

Parallel Comparison

* Upper limitis about 20 Mhz

« Adders alone occupy 70% of device
* Not routable

¢ Minimum 15 clock latency

An estimate of the size and performance of an
equivalent parallel processor in the same device can
be made by using the characteristics of a 16 bit adder.
The best performing 16 bit adder in this device has a
maximum clock frequency of 20.5 Mhz assuming the
inputs are registered right at the adder. That adder
fully occupies an 8 x 16 cell rectangular area. The 17
adders needed in this design alone cover 70% of the
available area in the array. A compact 16 bit adder
can be realized in half the area with a 2 x 32 cell
footprint, but its performance limits the clock to a
mere 13.2 Mhz assuming registered inputs and
outputs.

The wiring of the cross terms in the processor
requires an abundance of long routes. The routing
resources of the FPGA are too limited to
simultaneously provide the needed connections and
the required logic density. The parallel realization of
processor will not route in this part. Even if it did
route, the performance is not much higher than can
be done with a serial processor!

With special care and low logic utilization, the
parallel design looks like it would be feasible in the
largest Xilinx 4K parts. Even in those parts,
however, the best performance would only be about
20MHz based on the 16 bit adder performance!

Building a High Performance
Bit Serial Processor in an FPGA

SE@L

Vector Magnitude Applications

« Extracting polar data
from FFT

« Digital coherent receivers
« Robotics and positioning

* Medical, radar and sonar
imaging

The CORDIC vector magnitude has application
wherever a conversion from cartesian to polar space
is required. These potential applications include FFT
post processing, digital recievers, motion control and
sensing in robotics, and most imaging applications.
Minor modifications to the CORDIC processor
presented here can provide trignometric functions of
input angles, their inverses, hyperbolic trig functions
and their inverses, exponentials and logarithms
among other functions.

Bit Serial Processor Applications

« Audio signal processing

* Robotics and positioning

* Medical, radar and sonar
imaging

« Encryption

« Code conversions

Bit serial processing is applicable in nearly any
system where the data rate is achievable by a serial
system. The potential for enormous reductions in
hardware makes bit serial design attractive
anywhere more bang for the buck is needed. Prime
applications are audio, motion control, imaging,
encryption and code conversions.

Bit Serial Designs Work

« Compact
« Efficient
¢ Fast

* Easy

In this paper | used a real world example of a RADAR
application to demonstrate the techiques used to
create a high performance bit serial processor. The
simple interconnect and compact logic allow these
processors to significantly exceed the processing
power per gate of equivalent parallel designs. High
speed design techniques make bit serial a viable
alternative even in moderately high performance
systems!

Building a High Performance
Bit Serial Processor in an FPGA

Recommended Resources

* Tools
— Viewlogic workview plus
— Point tools for selected FPGA
— C compiler
* Other resources
— VLSI Signal Processing: A bit serial
Approach. P.Denyer & D.Renshaw
— Vendor application notes
« Consulting services, etc.

— Andraka Consulting Group
(401/884-7930) randraka@ids.net

[1] J.E. Volder, “Binary Computation Algortihms for
Coordinate Rotation and Function Generation,”
Convair Report, IAR-1 148, Aeroelectronics Group,
June 1956.

[2] R.J. Andraka, “FIR Filter fits in an FPGA using a
Bit Serial Approach,” Proceedings of the EE-Times
3rd Annual PLD design Conference and Exhibit,
March 1993.

[3] C.R. Rupp, “Digital Function Analysis and
Synthesis,” Course notes to 16.674, University of
Massachussets at Lowell, 1991

[4] P. Denyer & D. Renshaw, “VLSI Signal
Processing: A Bit Serial Approach. Selected
Readings,” Addisson-Wesley, 1985.

CLAy is a registered Trademark of National
Semiconductor Corporation (CLAy is the acronym for
Configurable Logic Array).

Viewsim and Workview Plus are registered
trademarks of Viewlogic Systems, Inc.

Xilinx XC4025, XC4013 and XC4010 are registered
trademarks of Xilinx.

S

7=
R

€Dy &

(96

