
An FPGA based processor yields a real time high fidelity radar environment simulator

R.J. Andraka1, and R.M. Phelps2

1Andraka Consulting Group, Inc. 16 Arcadia Drive, North Kingstown, RI 02852
2Telephonics Corp., 815 Broad Hollow Road, Farmingdale, NY 11735

Abstract
Radar parametric testing has traditionally required either

expensive trials in real-world situations (with many
uncontrolled variables) or very limited ’canned’ tests. The Von
Neumann processors normally used for signal processing are
severely limited in this application because of the inherently
serial instruction stream. This paper discusses the use of
FPGAs to accelerate the processing to obtain a near real-time
environment simulator. The FPGA logic handles the time
sensitive tasks such as target sorting, waveform generation, sea
clutter modeling and noise generation. DSP microprocessors
handle the less critical tasks like target movement and radar
platform motion. The result is a simulator that simultaneously
produces several hundred independent moving targets, realistic
sea clutter, land masses, weather, jammers and receiver noise.

I. INTRODUCTION

A. Traditional Test Scenario
Traditional Radar Target Generators (RTGs) are built to

test, debug, and demonstrate radar and target tracking
functions. Their aim is not a realistic simulation of the radar
environment, but rather to perform some basic testing. The
number of targets is limited and target motion is simple. The
radar platform doesn’t change position or attitude. Interference
is simulated by a simple Gaussian noise generator. The test
scenarios are canned; there is no real time interaction between
the radar/operator and the RTG

With traditional RTGs, it is not possible to adequately
evaluate system performance measures such as probability of
false alarm (Pfa), probability of detection (Pdet), and tracking
accuracy (σx, σv) in realistic environments. The simple
traditional test scenarios do not reflect real radar operation.
Realistic radar missions are not simulated or evaluated

B. LAMPS MMR Radar Target Generator
The LAMPS Multi-Mode Radar (MMR) Secondary

Equipment Radar Target Generator (RTG) developed by
Telephonics breaks the mold of the traditional RTG. The
number of targets is in the hundreds. Target and platform
(helicopter) motion are complex and realistic. High fidelity
clutter and noise generators are used. With realistic
interference simulation, it is possible to evaluate Pfa, Pdet, and
Track accuracy. The LAMPS RTG can be run with realistic
missions and real time interaction.

The high performance LAMPS RTG was designed to
perform much of the qualification and acceptance testing of

the LAMPS MMR, and to be integrated into a larger
interactive LAMPS scenario generator with a human operator,
helicopter pilot, and other LAMPS sensors.

1) Radar Performance Testing

One of the purposes of the LAMPS RTG is to perform
much of the qualification and acceptance testing of the
LAMPS Multi-Mode Radar (MMR). This testing would be
minimally supplemented by real-world testing (shore tests,
flight tests). Testing evaluates both user performance
requirements and derived system requirements.

User Performance Requirements include Pdet and track
accuracy for specified targets (radar cross section, distance,
height), interference (sea clutter, rain, sidelobe jamming),
detection method (manual display, Track While Scan) and
radar mode. For track accuracy, targets are linear or
maneuvering, and the helicopter moves within specified limits
for attitude (roll, pitch, and yaw), and attitude change rates. Pfa

levels are specified for interference, detection method and
radar mode. System Requirements are derived from the User
Requirements. They specify design decisions, algorithms, and
implementation details. All of these are tested using the
LAMPS RTG

Some performance requirements such as Pfa are impossible
to test in the real world: how would you know that detected
targets are not real, e.g., flying birds or floating beer cans.
Track accuracy can be tested in the real world only to the
accuracy of the instrumentation aboard the target. Detection is
probabilistic, requiring numerous runs to test each specified
test condition.

A feasible testing methodology is to run all performance
tests with the LAMPS RTG, and selected real world tests.
Agreement (consistency) between the real world tests and the
RTG tests validates the RTG simulations.

2) LAMPS RTG Requirements

The performance requirements for the LAMPS RTG come
from its required use in testing the LAMPS MMR and reacting
in real-time to operator commands.

To test the LAMPS radar, the RTG must be capable of
generating data in all radar modes. To evaluate tracking
accuracy, the RTG target position accuracy is required to be
an order of magnitude better than MMR accuracy
specifications. To test target detection, the target and
interference signal levels must be accurate to a fraction of a
decibel. To test false alarm rates requires noise and clutter
generators to have accurate tail distributions at Pfa levels of
10-5.

The real time operation requirement precludes the
possibility of elaborate canned scenarios, even with clever
preprocessing. Calculations must be done on the fly – data
must load quickly.

II. MODEL DEVELOPMENT

A. Target Models
Two variations of the target model are used, depending

upon the tests performed. An uncompressed model generates
realistic uncompressed video for point targets. It is used to
test the MMR signal processing, and to evaluate the radar's
ability to resolve targets. A compressed model simulates the
video signal as it appears after being compressed by a matched
filter. Since the sea clutter model is valid only for the
compressed model, the compressed model is used to evaluate
the probabilities of false alarm (Pfa) and target detection (Pdet)
and to verify tracking accuracy.

Regardless of the model, the simulator must be capable of
producing several hundred targets, each with an independent
motion trajectory, in order to be useful in the LAMPS mission
simulations. Motion of the radar platform (a helicopter) in 6
axes modulates the apparent target motion and position. There
may be as many as 100 targets at any given azimuth, so the
processor must be able to handle up to 100 targets in a single
PRI (pulse repetition interval). Targets whose responses
overlap in range create a special challenge for the generator
models chosen. A compromise was reached permitting no
more than two target responses to occupy any range cell to
avoid unnecessarily complicating the hardware. A two target
overlap is sufficient to test the resolution of closely spaced
targets. This limitation has minimal impact on the system
simulation.

1) Uncompressed Target Model

Target video received at the radar is the reflected energy of
the radar pulse transmitted, delayed by the time the signal
takes to propagate to the target and back. Without pulse
compression, the range resolution of radar is limited by the
width of the transmitted pulse. The minimum detectable target
and the maximum range are a function of the power in the
transmitted pulse. In order to keep the peak power at practical
levels and still be able to detect targets at reasonable ranges,
the pulse width must be widened. This deteriorates the range
resolution. By transmitting a signal that changes as a function
of time, then passing the received energy through a matched
filter, a finer range resolution is achieved while spreading the
transmitted pulse power out over time. This is known as pulse
compression in radar. The LAMPS radar’s transmitted pulse
frequency is linearly swept, resulting in a linear chirp. The
received energy for each point target is also a chirp with the
same characteristics as the transmitted chirp.

When the chirp is sampled, as it is in the radar receiver, the
start frequency of the chirp appears to be linearly modulated
by the timing relationship between the start of the chirp and
the instant the sample is taken. The time relationship is a

function of the range of the target. Therefore, by modulating
the start frequency of the sampled chirp, the simulator can
accurately position the target at fractional range bins (i.e.
between samples). A sampled target chirp can be produced by
a digital complex sinusoidal oscillator with the appropriate
start frequency and frequency sweep rate. A numerically
controlled oscillator (NCO) accumulates phase increments to
generate a rotating phasor. By modulating that phase
increment, a linear chirp with the appropriate start frequency
and chirp slope is created. The NCO is reset between targets
so that the chirp modulation is properly initialized. The
starting phase of the NCO for each target should be random so
that closely spaced targets are not coherent.

Overlapped targets result in superposition of the chirps
from each target. To accurately simulate this, an additional
NCO is required for each target simultaneously producing a
chirp. In order to handle two overlapped targets, the simulator
uses a pair of complex NCOs, each with it’s own start
frequency register. A target with a large range extent can be
represented by a large number of point targets closely spaced.
Since the chirps from each point will overlap, it is clear that
the NCO is only sufficient to model point targets.

2) Compressed Target Model

The compressed target model represents the target video
after it has been compressed by a matched filter. Matched
filtering creates a pulse corresponding to the target position.
The uncompressed video is the convolution of the target with
the chirp waveform. The matched filter essentially
deconvolves the chirp to recover the target pulse. Since we
are generating the target, the same effect is attainable by
filtering the target with an FIR filter whose coefficients are
chosen to provide the matched filter response for each
fractional range cell offset. Since the coefficients depend on
the target’s position relative to the range cell boundaries,
separate generators are required for each target simultaneously
(in the same range cells) generated. Again, a compromise was
reached permitting no more than two overlapping targets to
keep the hardware reasonable.

B. Interference Model
Radar interference is the sum of several noise and clutter

sources. Sea clutter is generated using the K-distributed sea
clutter model [1]. The sea clutter is combined with receiver
noise, weather, landmass targets and jammers to obtain a
composite interference as shown in Figure 1 and described in
Table 1. The noise and clutter from each source are
uncorrelated, so they are combined using root sum of squares.
The combined noise and clutter magnitude profile is used to
modulate a complex Gaussian noise source to generate the
total interference. The interference has to be modeled so that
the tail probabilities are accurate to 10-6 to facilitate testing of
Pfa and Pdet.

Γv

Receiver noise profile f{Rng}

Weather profile f{Rng,Az}

Landmass profile f{Rng,Az}

Jammer power profile f{Rng,Az}

Σxi
2

Sea clutter profile
(Correlated PRI to PRI due to

beam azimuth overlap)

Complex gaussian RV

√Gamma Random Variable
Tail probabilities to 10-6

Sea clutter magnitude f{Rng}

Shape factor (+15dβ to –15dβ)
f{Rng, Altitude, Mode}

K distributed sea clutter
+ Landmass clutter
+ Weather clutter
+ Jammer noise
+Receiver noise

Figure 1. Interference model

Sea clutter is modeled using the K-distribution described
by Ward et al [1] with parameterized shape factor and clutter
power. Clutter power is modeled using a constant gamma
reflectivity model. The K-distribution clutter model offers
several advantages over other sea clutter models: a) It models
sea clutter statistics accurately for a variety of radars and sea
clutter conditions. b) The shape factor parameter creates a
diverse family of clutter distributions: Small values generate
large sea spikes (the distributions have large tails), large values
generate benign sea conditions (small tails). c) The shape
factor parameter is defined in terms of the radar’s parameters
(range/angle resolutions, and polarization). Fitting the model
to a particular radar is straight forward - it doesn’t involve
making empirical measurements with the radar. d) Using the
K distributed model in the RTG provides the flexibility to
modify the model (by adjusting the shape factors and
reflectivity) without changing the hardware.

The K-distribution is the product of a gamma random
variable and a Rayleigh random variable. (The K-distribution
complex voltage is the product of a square root gamma and a
complex Gaussian random variable.) The gamma random
variable varies from scan-to-scan; with frequency diversity, the
Rayleigh random variable varies pulse-to-pulse. The K-
distribution is defined by two parameters: shape factor and
power. Shape factor is a function of grazing angle, range and
cross-range resolution, wind/ swell direction, and polarization.
Power depends on the clutter reflectivity. Using the constant-
gamma model, clutter reflectivity is a function of sea state and
grazing angle.

Radar interference is modeled as the sum of Gaussian
Noise and K-distributed Clutter. This interference model is
defined in Table 1. A formula for the shape parameter
(empirically derived in Reference [1].) is given in Table 2.
The constant-gamma clutter reflectivity model is defined in
Table 3.

Clutter and noise interference is generated using a square
root of Gamma Random Noise Generator (RNG) and a
Gaussian RNG as described in Table 4.

Table 1 Interference model: K-distributed clutter + noise

I = Interference = N P P Gn c⋅ + ⋅
where Pn = Noise Power, Pc = Sea Clutter Power

G = Gamma Distribution (for mean = 1)

density: f(x) = [αα / Γ (α)] * xα-1 * e-α*x , x > 0
parameter: α = shape factor

N = Complex Gaussian Noise = X + iY
where X, Y are normal distributed, mean = 0, σ2 = .5

Table 2 Shape parameter for K-distributed clutter

α = Shape Parameter

 = 10∧ (2/3 log Ψ + 5/8 log A + σ + k - .9042)

Ψ = grazing angle (radians)

Α = area (meters2)
 = range resolution x cross-range resolution

 - 1/3 for up or down swell direction
σ =  1/3 for across swell directions

 0 for vertical polarization or
 when no swell exists

 .7 for vertical polarization
k = 

 0 for horizontal polarization

Table 3 Clutter reflectivity: constant gamma model

Reflectivity = γ * sinΨ

γdB = -25.05 + 6 * (Sea State - 3)

Ψ = grazing angle

 = asin(h/r*(1+h/(2*re))-r/(2*re))

 (exact curved Earth formula)

Clutter Cross Section

= Clutter_Patch * Reflectivity

= (r*∆θ∆r/cosΨ) * (γ*sinΨ)

Table 4 Implementation of interference model

 Interference = ()P P g X Y in c
2 2 2+ ⋅ ⋅ + ⋅

 where g = √G, from square root of gamma RNG
 X, Y from Gaussian RNG

The square root gamma random variable is a seven bit
fixed-point number. The RNG uses the inverse histogram
method to obtain a 7 bit square root gamma distributed
random variable (128 probabilities to define the cumulative
distribution: a 32-bit uniform random number is generated,

and a 7 iteration binary search is performed). The gamma
random variables are generated for a wide range of discrete
shape factors: -15, -14.75. … , 14.75, 15 dB. Each shape
factor requires it own cumulative distribution probabilities.
The inverse histogram method is shown graphically in Figure
2.

Uniform RV Gamma RV

Cumulative Density
Function of desired
distribution

32 bits

Cumulative Density
Function of uniform
distribution (same as
uniform distribution)

Figure 2 Inverse histogram method used to generate gamma random
variables from uniform random variables

The gamma random variable distribution functions for the
shape factors 15, 10, 5, 0, -5, -10, and –15 dB are plotted in
Figure 3. Sea spikes (very large clutter returns) are generated
when the tails of the gamma distribution are large (i.e., for the
smaller shape factors).

0 20 40 60 80 100 120
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Integer Values

P
r
o
b
a
b
I
l
I
t
y

HISTOGRAM of PROBABILITIES: Gamma Dist v = -15,..,15 dB

-15-10 -5 0 +5

+10
+15

Figure 3 RTG Square Root Gamma Densities

-6 -4 -2 0 2 4 6

10-8

10-6

10-4

10-2

100

X

RTG Binomial approximation
Ideal Gaussian density

10-12

10-10

Figure 4 RTG Gaussian Density

Gaussian random numbers are generated by a binomial
approximation using 128 binary events (the sum of 128 1 bit
uniform random variables with the result normalized). Tail

distributions obtained by this generator are faithful to the
gaussian ideal to probabilities of 10-6 (see Figure 4)

The square root gamma random variables in the sea clutter
model are correlated PRI to PRI because of beam overlap at
adjacent azimuths. To compute the degree of correlation, a
rectangular beam model was used, and based on the PRI and
azimuth rate, the number of PRI’s contained within the beam
width was determined. This directly translates to a percentage
change from PRI to PRI. For the MMR, the maximum
replacement rate is 25% based on the beam width, PRI and
azimuth rate.

Azimuth clutter power correlation for different numbers of
hits (PRIs) in a rectangular beam are plotted in Figure 5. The
clutter is K-distributed with a small shape factor and frequency
diversity. The initial drop of 0.5 results from frequency
diversity (the Rayleigh part of the random variable
decorrelates PRI to PRI.) Linear correlation and finite extent
result from the rectangular beam shape.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PRI

C
o
r
r
e
l
a
t
I
o
n

Azimuth Clutter Power Correlation for K-dist. with Freq Divers.

4 hits per beam
7 hits per beam
10 hits per beam
20 hits per beam

Figure 5. Sea clutter power correlation due to beam overlap

Using the current gamma values to obtain the next value
through some formula would obtain the needed correlation,
but has the undesirable side effect of tainting a non-Gaussian
probability distribution. Instead, we can retain the clutter
values for each range cell from PRI to PRI, randomly
replacing values so that the proportion of changed cells
reflects the expected change due to beam movement. This
provides the desired correlation from PRI to PRI without
upsetting the probability distribution of the sea clutter.
Randomly selecting range cells results in some cells being
replaced more than once per PRI, while other cells aren’t
replaced for many PRI’s. This differs from reality; the beam
sweep causes all cells to be replaced after the number of PRI’s
contained in the beam width. The solution is to select the
range cells in a random sequence without revisiting any cell
until the sequence is complete. The sequence is permuted
each time it starts over to maintain the apparent randomness.
In addition to being more a faithful reproduction, this method
has the advantage of requiring a lower replacement rate than
random replacement. Random replacement requires a higher
rate to reduce the correlation beyond the beam width and to
compensate for cells that are changed more than once per PRI.

III. IMPLEMENTATION

A. Task Allocation
The Radar Environment Simulator is controlled by, and is

partially implemented in software. Tasks that are not time
critical are handled by software. Time critical tasks are
performed by custom hardware.

The radar sweeps in azimuth. At each incremental
azimuth, it sends a linear chirp and receives the reflected
energy. The time interval between the beginning of successive
chirps is the pulse repetition interval (PRI). Each PRI is
divided into an integer number of range bins representing the
reflected energy at successive range intervals. Each range bin
contains a digitized complex sample of the reflected
waveform.

For each PRI, simulated targets at the current azimuth need
to be sorted in range order. Targets outside of the active
ranges (determined by the timing of when the receiver is
enabled relative to the transmitted pulse) are discarded.
Waveforms need to be generated for targets within the active
ranges. For the uncompressed model, the target waveforms
are linear chirps, while for the compressed model the targets
are created by running a rectangular target pulse through an
FIR filter to simulate a chirp compressed by a matched filter.
This sorting and waveform generation is accomplished in
hardware, as it is too complex to be handled by software
within the time of a PRI.

Targets are slow moving relative to the PRI and azimuth
sweeps, so the target motion is handled by software, as is the
sorting of targets by azimuth. For each PRI, the software
presents the hardware with an unsorted list of targets to be
generated for that PRI. Each target is represented by a 64 bit
target descriptor containing a 16 bit starting range (range
where the target first appears), a 16 bit range extent (the
number range cells occupied by the target response), the
magnitude of the target, and a waveform characteristic. For
the uncompressed model, the waveform characteristic is the
chirp start frequency. Carefully chosen variations in the start
frequency have the effect of moving the target by a fractional
range bin. In the compressed model, the waveform
characteristic is a code to select one of ten filter coefficient
sets. Each set is computed for one of ten fractional range
offsets. This again permits the target to be positioned at
fractional range offsets. A special PRI terminator marks the
end of each PRI’s unsorted target list so the hardware knows
which targets belong to which PRI.

The sea clutter is random noise with a specific distribution
and with correlation from PRI to PRI. To obtain the
correlation and the required rate of change, the sea clutter is
generated in hardware using range attributes provided by the
software (shape factor and magnitude by range and change
rate). The sea clutter generator updates a sea clutter profile
table in a random sequence. The table is read linearly once for
each PRI to obtain the sea clutter magnitude at each range.

The Gaussian interference, consisting of the sum of
weather, land mass, and jammer returns is relatively static.
These values are maintained in an azimuth map in software.
For each PRI, the software presents the hardware with a range
dependent noise profile representing the root sum of squares
combination of these noise magnitudes. The hardware
combines the values of the noise for each range with the sea
clutter profile and the receiver noise profile using root-sum-of-
squares. The combined profile is the total interference noise
magnitude at each range. This profile modulates a complex
Gaussian noise source in the hardware to generate the
interference.

Software presents the Gaussian noise profile and the sea
clutter range tables in compressed format in order to conserve
the bus bandwidth. Decompression of these tables is done by
the hardware. Gaussian noise profiles are represented as
quadratic polynomial segments. The software provides the
start range and coefficients for each segment. Polynomial
expansion is performed by the hardware to recover the profile.
The sea clutter parameter tables are compressed using run-
length encoding which is decoded in hardware to recover the
table contents.

The required hardware consists of a ping pong input target
buffer, target sort & waveform generation, sea clutter
generation and table, Gaussian clutter expansion and the
complex Gaussian noise source. The hardware also includes
logic to combine the target and interference waveforms, and to
limit, format and buffer the output.

B. A Custom Hardware Solution
The original concept separated the hardware functions into

three dedicated-function custom modules: A target generator, a
clutter generator, and the PRI buffer. Two sets of these
modules were to be used in the complete RES system to
realize the required throughput.

The target generator module was to perform the input
buffering, target sorting and target waveform generation for
both the compressed and uncompressed models.
Uncompressed waveform generation was to be done using a
pair of STEL 1180 NCO’s [2] and a pair of 12x12 bit
multipliers for each of two target channels1. Compressed
targets were to be produced using a pair of Harris FIR filter
chips. The approach to sorting the targets was unresolved,
with a scheme using Content Addressable Memories (CAMs)
from Music Semiconductor high on the list of proposed
solutions. Each of these special purpose chips requires a
special interface to set the function and parameters.
Preliminary estimates indicated that the target module logic
might not fit on a single board.

The proposed clutter module was to generate new sea
clutter values for each range cell on each PRI, then randomly

1 a pair of real-only NCOs is required to generate the quadrature
chirp, and the multipliers are needed to scale the complex chirp by
the target magnitude

use either the new value or the one from the previous PRI.
That module also was to decompress the Gaussian clutter,
generate the complex Gaussian noise and combine the
resulting interference with the target waveforms from the
target module.

An additional module, the PRI buffer was proposed to limit
the combined waveforms, format them into either IQ data or
magnitude data (depending on radar mode) and buffer the data
by PRI in a ping pong buffer.

C. An FPGA Solution
The original concept design presented too many design

challenges without the added pressure of an aggressive
schedule and an incomplete design specification. Custom
fixed function hardware effectively locked the algorithm in the
board design, leaving no options if flaws were later found in
the algorithms or specifications (and there were some). The
RES development paralleled the Multi-Mode Radar (MMR)
development. Changes in the radar rippled over to
specification changes in the RES. The changes were too
frequent to be able to proceed comfortably with an
unchangeable RES design. Additionally, we identified a
potential real-estate shortage on the target generator module,
and later a slot shortage in the system rack. As a result of
these potential problems, we pushed for and obtained reluctant
approval for an FPGA based system.

Using FPGAs allowed us to eliminate all of the special
purpose chips and obtain a greater level of integration in the
design. We immediately recognized that a common board
design could be used for all the modules in the system if the
required logic and interconnect for all applications existed on
the board. We studied the hardware requirements to arrive at a
common board architecture. First a block diagram, showing
all the components of the target, clutter and PRI buffer
modules, was drawn. We tailored each sub-function for
implementation in an FPGA or as a memory lookup, then

repartitioned the design into two boards. Each board was trial-
partitioned into FPGAs. The resulting partitioned block
diagrams were overlaid on one another and then adjusted to
reuse memories and interconnect as much as possible. After
several iterations, a minimum common architecture became
apparent. We then expanded that architecture to complete the
symmetry and make all connections the same for each FPGA
device. The resulting architecture is a linear systolic array of
four 4025E-2 FPGAs. The systolic connections are 32 bits
wide. Each device has a pair of completely independent 64K
x 16 12ns SRAMs attached to it on private busses. Each
FPGA also connects to either of two auxiliary busses by way
of bus switches. The auxiliary busses provide general
interconnect between the FPGAs. Additional bus switches
connect two expansion ports to the dangling systolic busses or
to one of the auxiliary busses. The architecture of the module,
dubbed the Flexible Pipeline Processor, is shown in Figure 6.

The module includes an FPGA configuration controller and
EEPROM storage for 16 FPGA programs. The host software
can direct configuration of all 4 FPGAs with a single word
write (four 4 bit fields, one for each FPGA select which of the
16 stored programs is loaded into each FPGA). The host
interface and configuration controller are implemented in
Lattice Semiconductor In-System Programmable (ISP) logic.
Non-volatile programmable logic here provides a permanent
interface with the flexibility to make changes if necessary.
(The Pentek MIX interface varies somewhat from the Intel
MIX interface standard, and at the time all of the details of
those variations were not available, so programmable logic
provided a hedge against uncertain bus specifications).

The repartitioning of the design, along with the higher
integration achieved by using FPGAs to perform the special
functions allowed us to include the PRI buffer function on the
target generator module.

RAM
(64Kx16)

XC4025E-2

1616

RAM
(64Kx16)

1616

RAM
(64Kx16)

XC4025E-2

1616

RAM
(64Kx16)

1616

RAM
(64Kx16)

1616

RAM
(64Kx16)

1616

32 3232

16

XC4025E-2 XC4025E-2

RAM
(64Kx16)

1616

RAM
(64Kx16)

1616

161616

3232 32 32

32

32

32

32

Configuration
Control & storage

MIX Host
Interface

Figure 6. Flexible Pipeline Processor board architecture

Gaussian
Noise

Generator

Input Buffer
&

List Sort

Unsorted
Target

Descriptors
from Host

Input Buffer
&

List Sort

L
a
t
c
h

L
a
t
c
h

STC Table
by range

mag

mag

∆ phase or coef

NCO or FIR
target wave
generator

∆ phase or coef
NCO or FIR
target wave
generator

Root Sum of
Squares
Table

Gaussian
Noise

Generator

Receiver Noise
Profile Table

by range

Larger + 1/2
smaller

Magnitude

L
i
m
i
t

L
i
m
i
t

L
i
m
i
t

Output
Format,
Scaling

and
Trunc-
ation

Output
Buffer

Output
Buffer

Output to
SDP/RDP

Clutter Profile by
range from Clutter

Module

I

Q

Figure 7. Target generator block diagram. The uncompressed model uses NCOs while the compressed model uses FIR filters with Q =0.
Shading shows the FPGA partitioning

D. Target Generator Design
The Target Generator is a set of FPGA programs for the

Flexible pipeline processor module. The target generator
takes advantage of the FPP reconfigurability to handle the
different target generator models, as well as to provide the host
access for module set up and function test. Figure 7 shows the
target generator architecture for both the uncompressed and
compressed target models. The uncompressed model uses the
NCO generator, while the compressed model uses the FIR
generator. The target generator accepts an unsorted list of
targets from the host for each PRI. It sorts the list then
generates target waveform at each range cell. Two target
waveform generators are used to permit overlapping targets.
Interference corresponding to the combined clutter and
receiver noise is summed with the target responses. The
resulting data is limited, scaled, formatted and stored in a ping
pong buffer.

1) Target Sorting

Target data for each PRI is written to the module by the
host software as an unsorted list of target descriptors
terminated with an end of list write. Each descriptor consists
of a start range (first range bin the target appears), a length
(number of range bins the target appears in), the target
magnitude, and a target characteristic. The characteristic,
which sets the fractional cell range, is the starting frequency of

the chirp for the uncompressed model or the filter coefficient
select code for the compressed model.

The target sort is accomplished using a tag memory and a
register file. The length, magnitude and characteristic for each
descriptor are written to a register file in the order they are
presented by software. The register file pointer is written to a
64K deep tag memory at the address equal to the start range
parameter in the target descriptor. The memory is presumed to
be clear before writing any tags. When the target list is
complete (end of list marker written) and the output buffer is
available for a PRI of data, the tag memory is read in range
order. Each time a non-zero tag is encountered, the contents
of the register file corresponding to that tag are fetched and
presented to the waveform generator. Each location in the tag
memory is cleared immediately after it is read so that upon
reaching the end of the PRI, the tag memory is clear. Two
such buffers are used so that one is accepting the next PRI’s
list while the other is outputting a PRI’s sorted data. The
sorted targets are latched as they are read out so that they
persist for the number of range bins specified in the target’s
descriptor. The target sort algorithm allows targets in closer
ranges than the first range of the PRI to be evaluated and
processed so that in-range ‘target tails’ appear even though the
start range of those targets is outside the active ranges. The
target sort logic accepts up to 127 targets per PRI, including
those not in active ranges (active ranges are those between the
PRI start range and PRI range extent).

2) Target Waveform Generation

The sorted target descriptors feed one of a pair of target
waveform generators. In the compressed model, each target
generator is essentially an FIR filter, while in the
uncompressed model each generator is a numerically
controlled oscillator (NCO) with a complex output
proportional to the target magnitude. The FPGA is
reprogrammed with the appropriate generator when the models
are changed.

In both the compressed and uncompressed cases, there are
two instances of the appropriate generator so that overlapped
target responses may be produced. The IQ responses from the
two generators are combined using the vector sum.

The NCO used for the uncompressed model consists of a
phase accumulator capable of producing linear chirps and a
polar to cartesian converter. The polar to cartesian conversion
translates the phase angle and the target’s magnitude to the I
and Q components of the complex chirp. The phase
accumulator integrates a constant chirp slope (programmed by
the host), adds the resulting phase increment to the start
frequency defined by the target descriptor and integrates the
sum to create the phase angles for successive samples of the
chirp. The phase angle is randomized when the accumulator is
not producing a target.

A CORDIC rotator converts the phase and magnitude
representation of the chirp to an IQ format by rotating a vector
representing the target magnitude from the I axis through the
angle provided by the phase accumulator. CORDIC rotation is
a shift-add algorithm for rotating vectors [3]. The CORDIC
implementation has about the same logic complexity as a
single multiplier, yet replaces two multipliers and sin/cos look
up tables.

The target magnitudes are scaled by a static range-
dependent STC curve to simulate range attenuation. The
magnitudes are multiplied by values from an STC curve table
before being passed to the NCO (STC curves are not applied
by hardware for the compressed model). The STC curve table
is stored in one of the memories associated with the waveform
generation FPGA. Since the table is static, it is loaded before
the NCO design is loaded, eliminating the load logic from the
design. The STC curve also has a bit that causes targets to be
blanked (suppressed) in ranges where it is set to simulate
receiver blanking.

The compressed model uses an FIR filter for each
waveform generator. The filter coefficients are selected to
generate the desired (real only) target waveform from a
rectangular input. The filter input is the magnitude from the
target descriptor, which persists for the number of range bins
specified by the descriptor’s length parameter. The filter is
substantially simplified by generating the response to a
normalized target and multiplying the resulting waveform by
the target magnitude (this eliminates the multipliers in the
filter). The filter coefficients are selected from one of ten
coefficient sets corresponding to equally spaced target position
offsets into the range cell. The filter coefficients are written

into registers in the FPGA by the host software, rather than
being hard-coded in the design to avoid having to recompile
the design for coefficient changes.

3) Gaussian Noise Generation

Interference is generated using a complex Gaussian noise
generator modulated by the combined noise and clutter
magnitude profile. The modulation is accomplished by
multiplying the combined profile by each component of the
complex Gaussian noise. Each Gaussian noise component (I
and Q) is generated by summing 128 random binary values
and a bias constant (bias shifts the mean to zero). The random
binary values are produced by 64 independent 129 bit Linear
Feedback Shift Register (LFSR) counters, each of which is
randomly seeded. The 129 bit LFSR counters produce a
pseudo-random sequence that takes over 3000 years to repeat
when clocked at 80 MHz. Randomly seeding the counters
assures (with reasonable certainty) that the counter sequences
are independent over intervals of a few PRIs. A tally adder
sums one bit from each LFSR to produce a 6 bit binomial
random variable on each cycle of the 80 MHz clock. Two
consecutive binomial random values are summed to obtain the
7 bit Gaussian approximation at 40 Mhz. The circuit is
duplicated (but using different seeds) to produce an
independent Q component.

The I and Q Gaussian noise generator outputs are each
multiplied by the combined clutter profile. That complex
product is summed (vector sum) with the combined target
waveforms before they are limited, scaled and formatted for
output. The combined clutter profile is the root-sum-of-
squares combination (to properly combine the uncorrelated
noise magnitudes) of receiver noise, land mass targets,
weather, jammers, and sea clutter. The receiver noise profile
is a static range dependent table programmed during system
initialization by the host software (it is not accessible when the
operational design is loaded). The hardware handles the
receiver noise to lighten the software load and so receiver
blanking is simulated correctly. The receiver noise profile is
combined with the composite clutter profile from the clutter
module using a root-sum-of-squares look up table. That
composite profile modulates the Gaussian noise.

4) PRI Buffer

The combined target and noise waveforms are subjected to
a programmable saturation limiter. The limiter independently
limits the I and Q components of the composite signal to
simulate clipping in the receiver channels. Each limiter is
symmetric about zero. The limit value, common to both the I
and Q channels, is programmed by the host software. In RTG
modes where the module outputs magnitude instead of IQ
data, the vector magnitude is computed using a larger-plus-
half-smaller magnitude approximation before limiting. Larger-
plus-half-smaller magnitude is used to match the magnitude
function in the MMR radar equipment.

The output of the limiter is scaled by a software controlled
power of two using a barrel shifter to set the system gain. The

output from the scaling logic is truncated to 8 bits (16 bits for
16 bit magnitude modes). The composite waveform is
effectively dithered by the Gaussian noise before truncation.

The scaled result is stored in a ping pong buffer in range
order. The buffer ‘buckets’ change input and output roles after
a complete PRI is processed by the target generator and the
previous PRI has been output to the radar.

7

Sea Profile
RAM

(dual port
64Kx8)

'$

Sea Profile
Generator

'$

16 bit
Range
counter

Gate

Gaussian
Clutter
Profile

Generator

Root sum of
squares

7

profile to Target
Generator

range
reset

7

16

MIX
interface

16

7

target
blanking

sea
blanking

Figure 8. Clutter generator block diagram.

E. Clutter Generator Design
The Clutter Generator is a second set of programs for the

Flexible Pipeline Processor. The clutter generator function is
the same for all modes of the RTG. The sea clutter model is,
however, accurate only for the compressed model. The clutter
generator consists of a sea clutter profile generator and RAM,
Gaussian clutter profile expansion logic, and a root-sum-of-
squares function to combine the profiles. Figure 8 is a block
diagram of the clutter generator module.

1) Gaussian Clutter Expansion

Gaussian clutter is the combination of clutter contributions
from jammers, weather and land masses. Host software
combines the noise magnitudes from these relatively static
sources and stores the profiles in an azimuth map. The
profiles are transferred to the clutter generator hardware for
each PRI. Profiles are stored and transferred in compressed
form so that software can transfer the data for all the range
cells of a PRI within the PRI time (if not compressed, the
software would have to transfer profiles at 40 Mbytes/sec just
to keep up with the PRI processing). The compression scheme
breaks the profile into a series of quadratic polynomial
segments. Only the endpoints and the quadratic coefficients

are transferred to the hardware. The hardware reconstructs the
profile on the fly using the endpoints and coefficients supplied
by the software. Each segment also carries two tag bits that
specify whether sea clutter or targets are to be blanked during
the ranges corresponding to that polynomial segment. This
capability permits accurate modeling of landmasses and the
ability to modulate the receiver blanking intervals on a per PRI
basis (needed to support frequency diversity). The polynomial
endpoints and coefficients are queued on the module in
compressed form, where they are retrieved when needed by the
expansion logic. The queuing permits polynomial segments to
be stored several PRIs ahead of when they are actually needed.

Arbitrary Distribution RV Generator

Sea Profile
write cntrl

Random
Range

Generator

Shape
factor

Table
decompress

7

Shape
Factor
lookup

Magnitude
Modulation

Profile

16

Random
Range

Address

Sea
Clutter
Data

7

Random Range

CDF
lookup
table

Binary
search
engine

Compare

7

Uniform
Random
Gen

32

32

7

7

Arbitrary Distribution RV Generator

Gamma
Random
Variable

MIX
interface

Figure 9. Sea Profile Generator Detail

2) Sea Clutter Generation

The sea clutter generator, shown in greater detail in
Figure 9, updates a sea profile table in random range order.
That table is read out in range order for each PRI to obtain the
current sea clutter profile. The value at each range cell in the
sea profile table is a gamma distributed random value scaled
by a range dependent magnitude value. Software computes the
magnitude based on the constant gamma clutter reflectivity
model and updates the table (organized by range) in hardware
whenever there are platform altitude, sea state or radar mode
changes. The shape factors for the gamma distributions are
also maintained in a hardware table arranged by range.
Software also updates the shape factor table for changes in
platform altitude, sea state and radar mode. The correlation of
the sea clutter between successive PRIs is controlled by
limiting the number of range cells replaced by hardware in the
sea profile table during each PRI.

The gamma distributed random variables are obtained by
searching a cumulative density function (CDF) table using a
32 bit uniformly distributed random value (from a 129 bit

LFSR counter) as the table key. The search is a seven iteration
pipelined binary search of the 128 entry by 32 bit CDF table
selected by the shape factor. The search locates the largest
CDF table entry not exceeding the value of the 32 bit uniform
random value. The resulting address is a seven bit random
value with the probability distribution specified by the CDF
corresponding to the shape factor for the current range cell.
This technique permits an arbitrary probability distribution (a
fact that is used to simplify the functional testing). The
magnitude from a look-up table, delayed to align it with the
gamma RV, scales the result to produce sea clutter profile
values. The maximum required sea clutter replacement rate is
25 percent of the range cells per PRI. Since the pipelined
binary search turns out a maximum of one new random value
every seven clocks, the maximum achievable replacement rate
is 14 percent. The CDF search logic and tables are duplicated
to generate two values every 7 clocks, boosting the maximum
replacement rate to 28 percent. The CDF tables are static, so
the binary search FPGAs do not contain logic to provide host
access to the tables. The host software programs the tables
using a special FPGA configuration before the search design is
loaded.

The random range generator produces a random sequence
through the active range cells (those that are included in the
PRI). The hardware discards range addresses outside of the
active ranges before finding the gamma RV so that the
maximum change rate is not degraded. The generator visits
each cell in the active ranges before starting over with a new
sequence. The hardware adjusts the length of the random
sequence to the smallest power of two greater than the number
of active range cells to minimize the number of discarded
addresses. Each pass through the sequence is permuted so that
the order the range cells are visited changes. Valid range
addresses are queued in a FIFO buffer where they are kept
until needed by the gamma random variable logic. Range
generation is suspended when the FIFO gets full to prevent
losing valid ranges. A counter is used to limit the number of
cells changed per PRI. This provides a control over the degree
of sea clutter correlation between successive PRIs.

The data provided by software for the shape factor and sea
magnitude tables is compressed using run-length encoding in
order to conserve MIX bus bandwidth. The clutter hardware
performs the run length expansion when filling those tables.
The table writes occur as needed between the scheduled table
reads so that table updates do not hinder sea clutter generation.

The sea profile RAM is read out in range order during each
PRI. The range ordered sea clutter and Gaussian noise
profiles are combined using a root sum of squares function
look-up table. This combined profile is passed on to the target
module where it is combined with the receiver noise and then
modulates a complex Gaussian noise source. The root-sum-of-
squares function is implemented as a static look up table that is
programmed by host software during module set-up (before
the operational FPGA programs are loaded).

IV. BENEFITS OF USING FPGAS FOR PROCESSING

A. Algorithm Design Decoupled from Board design
The first significant benefit we saw from moving the design

to a reconfigurable FPGA platform was that the board design
became largely independent of the algorithm design.

The architecture for the FPP board was developed using
the block diagrams for the proposed target and clutter modules
as described earlier. This made sure that the number of
memories per FPGA, number and size of FPGAs, and the
interconnect structure was sufficient to host both designs
without compromise. The architecture was then generalized
by filling out the connections to make it symmetric. This
helped to ensure the module could be used for other
applications. (As it turns out, the architecture is better suited
for many pipelined DSP applications than many of the
commercially available FPGA processor modules).

Decoupling the algorithm from the board yields several
significant benefits. First, the common board design is reused
in multiple applications (by design). This eliminates the extra
cost, risk and effort otherwise required for unique board
designs. The general-purpose board can also be used for
future and unrelated applications. A second benefit is the easy
path for recovery from specification changes, algorithm tweaks
and design errors. Since the algorithm is implemented entirely
in reconfigurable logic, any changes are essentially code
changes. That means there is no board rework required to
recover from any design upsets. This permitted us to proceed
with the board release much earlier than would have otherwise
been possible.

Having the board design separated from the algorithm
design also gave us the opportunity to fabricate and
completely test the board before the FPGA designs for the
algorithm were completed. This accelerated the design cycle
in two ways. First, the board was not held up waiting for
FPGA designs, and secondly the verified board became a tool
for the FPGA development. By having a verified board
available during the FPGA development, we were able to
verify the FPGA designs on actual hardware in lieu of more
intensive and time-consuming simulation.

Since the same board was used in multiple applications, the
common elements in the design such as the FPGA interfaces to
the host, the memory interfaces and I/O pin placements could
be reused in many places in the design. This reuse allowed us
to check these common parts once in a test design then use
them with confidence in the operational designs. The reuse of
key design elements also significantly reduced the design
effort.

The on-board configuration memory holds 16 FPGA
configurations, so all of the operational programs could be
programmed into all modules regardless of the intended
function. This avoided the nasty part numbering exercise that
seems to happen all to frequently when the hardware is
physically identical, but is programmed differently. There was
enough room left in the configuration memory to also hold the

IFF transponder simulator design, which was eventually
implemented on another copy of this board.

B. Highly Integrated Design
Using FPGAs as the design fabric also allowed us to

achieve a greater degree of integration than was possible using
other off-the-shelf components. The greater integration
reduced the module count by two and eliminated many
specialty parts.

The concept design used four devices (two STEL 1180’s
and a pair of multipliers) for each complex NCO to support the
uncompressed model, plus a pair of Harris FIR chips for the
compressed model. The target sort was to tentatively use
content addressable memories to effect a fast sort. All of these
were high dollar single source items, and all had peculiar
interfaces required to set them up for operation. Instead, these
functions were accomplished in FPGA logic, eliminating the
specialty parts and the Rube Goldberg interfaces otherwise
needed. Control of these functions was also vastly simplified.
Designing these functions into the FPGA also opened them for
customization to our needs. This allowed us to introduce a
random start phase for the chirp NCO (something we
previously had to work around) as well as to customize the
word widths to our needs. It is worth noting that the
performance of the FPGA designs met or exceeded the
performance specifications for the special purpose parts in all
cases, and that the FPGA solution has a lower total component
cost.

A fixed function board requires all the logic for all modes
of operation to be present whether the logic is currently used
or not. In contrast, by using reconfigurable logic, mode
specific designs can be loaded each time the RTG mode
changes. This not only eliminates the logic for other modes,
but also eliminates all the switching logic and configuration
registers otherwise used to select the current function. We
also took advantage of reconfiguration to pre-load static look
up tables in memory, eliminating the logic otherwise required
to read and write those tables. The idle logic is essentially
cached in cheap EEPROM memory. By loading only the logic
that is currently needed, the design is more compact, faster
(less latency due to function select) and uses less power. The
power consumption would have been more than 25% greater if
all the functionality was resident in the FPGAs at once. This is
significant, since each board dissipates about 30 Watts.

The logic used to create the target waveforms occupied
nearly 3/4 of the available real-estate on the concept module
design. By eliminating the interface logic, using
reconfiguration, and tailoring the algorithms to FPGA
implementation, this logic was reduced to two designs for one
FPGA (Only one is resident in the FPGA at any given time).
We were also able to reduce the load on software by adding
additional multipliers and tables to implement the range
attenuation (STC curve) and receiver noise in the hardware.
This design shrinkage freed enough room to incorporate the
PRI buffer function on the target generator module. With a
little tailoring, the PRI buffer board design also collapsed into

a single FPGA. Since there are two sets of modules in the
RES, this integration reduced the module count by two.
Combining the modules also reduced the inter-board cabling,
thereby increasing reliability.

C. Debug and Integration Substantially Simplified

1) Board Test Independent of Algorithm

Using FPGAs and memory as the processor fabric also
provided an outstanding opportunity for exhaustive
diagnostics. A separate FPGA program was used to test the
board function without having to worry about effects caused
by the algorithms. Four copies of the test program
simultaneously tested all of the memories at the clock rate
using interleaved reads and writes and an LFSR generated test
pattern. The test read address is the previous write address
inverted. The read data is compared to a second LFSR with a
reversed sequence and errors are accumulated to provide an
error count. This test causes all of the address bits and many of
the data bits to toggle on every clock cycle. This really is a
worst case test pattern in terms of bit transitions, timing, data
patterns, and noise. Passing this test at the clock rate assured
us that there were no timing or signal quality gremlins waiting
to bite us during algorithm checkout. Such a brutal test clearly
is not possible using a more traditional host interface to the
memory. Of course, the test program also gave us traditional
host access so that we could check basic memory function
before running the full clock rate test.

The test FPGA programs also allowed us to run test
patterns through all of the interconnect wiring, bus switches
and expansion ports. Like the memory tests, these tests run
LFSR test patterns at the clock rate through each of the
interconnect paths. Each line was driven in turn by each of the
possible sources and sensed at all the destinations to ensure
interconnect integrity. The connection and isolation of all the
bus switch elements was checked. A loop-back cable
connected between the expansion connectors allowed a full
check of the expansion port registers and drivers too.

The ability to reconfigure the FPGAs to run high speed
dynamic tests on the board gave us a 100% board checkout
with very little test vector design effort. Without
reconfigurability, such coverage would have been highly
impractical if not impossible, very expensive, and would have
required a monumental test vector design task. The largest
benefit of using reconfiguration for board test is that it
completely isolated the board test from the algorithm design.
That meant that once the board was tested, the algorithm could
be debugged with confidence in the electronic substrate.

2) Reconfiguration Speeds FPGA Design Tests

Algorithm and FPGA design also benefited from the
reconfigurability of the FPGAs. The board design
intentionally has identical connections for all four FPGAs.
This makes the FPGA designs relocatable, allowing any FPGA
design to be loaded into any of the FPGA devices. Relocating
the FPGAs allows each FPGA design to be surrounded with

test designs. To test an FPGA, the host loads a test pattern into
memory associated with a test design. That test pattern is then
run through the FPGA at the design clock speed and the results
are collected in the memory associated with the test program
on the other side of the FPGA under test. After the test run is
complete, the host can read and analyze the captured results at
a leisurely pace. Similarly, combinations of FPGAs can be
tested for function and performance. Where analysis was
required at a sub-FPGA level, the FPGA design was modified
to strip out logic following the desired pick-off. Testing the
stripped down logic verified the portion of the circuit under
test.

This access to individual FPGAs provides access to key
points in the data stream without incurring a logic overhead in
the design. More importantly, the ability to grab intermediate
results with supplemental programs rather than with permanent
access points in the design allowed debug at the design clock
rate and eliminated costly test logic. Traditional testability in
pipelined hardware allows the host to read the data stream at
selected pick-off points. That usually requires the data pattern
to be held static during the relatively slow host reads. A static
data pattern can easily mask timing problems and data pattern
sensitivities.

3) Hardware Verification Done Offline

Much of the software was developed on the actual RES
system to avoid porting issues. Most of the software function
was coded and checked without the hardware modules
installed. The large number of people working on the project,
and the limited number of systems put a high premium on
system time, especially for exclusive use like that required for
hardware debug. The host MIX bus interface is implemented
in Lattice ISP programmable logic (selected for non-volatility
and ability to be reprogrammed in-circuit). By reconfiguring
these devices with a parallel port interface, we were able to
perform the hardware debug off-line. The parallel port
interface was specifically designed to appear exactly like the
MIX interface when viewed from the FPGAs. This way,

the FPGA application programs would run the same whether
the host was the MIX baseboard in the system or a personal
computer. By using a PC as the host, we were able to do the
hardware development, debug and verification off-line (and
for the most part off-site) using familiar tools, and without
system availability issues.

A substantial part of the hardware debug effort consisted of
writing C programs to exercise and analyze the module
functions. As each function was verified, the test code was
passed on to the software team to serve as interface examples.
The astonishing result was that the hardware/software
integration was completed within a week of when the software
team first saw the boards!

V. CONCLUSIONS

The use of FPGAs as the hardware for a radar environment
simulator provided custom hardware sufficient for a very
complex simulation while also producing significant benefits.
Benefits realized include reduced module count, flexibility to
make design changes, simplified testing and integration, and a
reusable module design.

REFERENCES

[1] Ward, K. D., Baker, C. J., and Watts, S., “Maritime
surveillance radar. Part 2: Radar scattering from the ocean
surface”, IEE Proceedings, Radar & Signal Processing, Vol.
137, Pt. F, No. 2, April 1990

[2] Stanford Telecommunications Inc., “STEL 1180 Data
sheet”, Rev 2/25/94.

[3] Andraka, R. J., “A survey of CORDIC algorithms for
FPGA based computers," Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field
programmable gate arrays, Feb. 22-24, 1998, Monterey, CA.
pp191-200

